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1 Introduction

This technical report shows the use of the Maude MSOS Tool [2] in the
specification and verification of distributed algorithms. It is well known
that SOS and MSOS are formalisms not only used in the specification of

programming languages, but also of concurrent systems [8, 9]. The conversion
from MSOS to Rewriting Logic performed by Maude MSOS Tool using the



Maude interpreter enables the use of Maude’s built in Linear Temporal Logic
(LTL) model checker and breadth-first search capabilities.

This report is organized as follows: Section 1.1 defines a model for pro-
cess execution of distributed processes and Section 1.2 shows the examples
from [4] and [3].

1.1 Process execution model

This Section outlines a simple process execution model. We begin with the
notion of processes and process identifiers. The set ‘Proc’ represents pro-
cesses in our specifications:

Proc .

A process contains an integer as its process identifier (pid) and an ab-
stract data type that represents its local state (‘St’). The local state is
dependent on the algorithm being specified, and will be mostly used on our
specifications to record the state of the computation of a process, but it can
also store temporary values that are local to a specific process throughout
the execution.

St .
Proc ::= prc (Int, St)

We follow ideas present in [5, 1] and create a set ‘Soup’ that represents
an associative-commutative “soup of processes.” A single process is a trivial
soup. The evolution of the soup is done by selecting non-deterministically
a process out of the “floating processes,” made using matching modulo as-
sociativity and commutativity, evaluating this process, and putting it back
into the soup.

Soup ::= Proc .
Soup ::= Soup Soup [assoc comm]

The following rule implements the evolution of the soup of processes.

[execl] - ————"-""""""""""""""""""



One could write the left-hand side of the conclusion as ‘Soupl Soup2’,
instead of ‘Proc Soup’. This would select non-deterministically an entire
portion of the soup to evolve. This extra generality is not necessary on some
of the algorithms shown here, since they specify transitions for a particular
process, and not a subset of processes. The alternative rule would then
recursively apply to itself until ‘Soup1’ is a single ‘Proc’ to which there are
other applicable transitions available, generating unnecessary rewrites, and
artificially augmenting the state space of a particular specification.

Finally, we need a rule for the trivial case in which the soup consists of a
single process:

Proc : Soup -{...}-> Proc’

1.1.1 Process communication models

This Section describes two possible models for process communication: shared
memory and message-passing.

Shared memory model is trivially implemented with the use of a read-
write component on the label to store the shared variables of the processes.
The remainder of this Section deals with a simple message passing model on
an asynchronous network.

The set ‘Msg’ represents the messages that circulate on the network.

Msg .

The specific type of message is, as usual, algorithm dependent, but, for
this exposition let us assume the following:

Msg ::= msg Int from Int to Int .

where the first argument is the value to be transfered, the second is the origin
of the message, and the third is the destination.

The message passing mechanism in our specification follows Maude’s
pattern matching capabilities. In this mechanism, messages and processes
“float” on the soup and the transition rules will emulate the transmission
of a message to a process by matching the destiny argument of the message
with the pid present on the process object. For this we need to expand the
range of the ‘Soup’ object to allow also messages.
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Soup ::= Msg | Proc .

To exemplify the message passing through matching, consider the fol-
lowing fragment in which a message originating from process ‘Int’’ with a
destination of process ‘Int’ is paired with the process of pid ‘Int’.

prc (Int, St) (msg C from Int’ to Int)

Since now processes and messages need to interact for the evolution of
the soup, we must generalize the interleaving rule to allow the evolution of a
portion of the soup.

[exec2] -- ——————————————————
(Soupl Soup2) : Soup -{...}-> Soup’l Soup2 .

While it is true that this rule has the drawback discussed at the beginning
of Section 1.1, its generality allows no a priori commitments on the nature
of the algorithm. In order words, the relationship of objects and messages is
left open for a wide variety of interactions, depending on the specific needs
of a particular specification.

1.1.2 Justice

Let us discuss justice in rule ‘[execl1]’. It is easy to notice that there is
no specific order in which processes are selected to be evaluated: all possible
traces of execution are produced, including those in which a particular process
loops forever, not letting any other process evolve.

A very simple way of adding justice to a specification is by controlling
which process is chosen to be evaluated through some sort of scheduling
policy. Let us describe one such policy, the round-robin, or fair scheduling of
processes. It consists of having a counter that operates modulo the number
of processes: the current value of the counter is the pid of the process that
is allowed to execute; upon executing one step, the counter is incremented.
With this strategy, all processes eventually reach their execution turn.

This is implemented by adding a read-write component indexed by ‘fair’
to the label.

Label = { fair : Int, fair’ : Int, ... } .
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We now change rule ‘[execl]’ to reflect the scheduling just described.
Let us assume that there is a constant ‘n’ that will be instantiated later,
through an equation, with the number of processes in the soup.

Int’ := (Int + 1) rem n,
prc (Int, St) -{fair = Int, fair’ = Int, ...}-> prc (Int, St’)
(prc (Int, St) Soup) : Soup -{fair = Int, fair’ = Int’, ...}->

prc (Int, St’) Soup .

Even though this solution works, it is far too restricted: all processes
receive the same probability of execution, which is not always the case, and
the processes always execute on the same order. This last restriction may be
lifted by using a pseudo-random number generator and randomly selecting
which process to evaluate at a time.

1.2 Examples
1.2.1 Another thread game

Let us begin with a simple specification, based on the thread game described
in [3]. This specification also demonstrates the problems associated with the
justice (or lack thereof) in the specification.

Two threads continuously attempt to update the value of a shared vari-
able: one process increments the value by one, while the other decrements the
value by one. This shared variable is modelled using a read-write component
indexed by ‘v’.

Label = {v : Int, v’ : Int, ...} .

Let us formalize the behavior of both threads. Process ‘prc 0’ increments
and process ‘prc 1’ decrements. Let us also limit the value of the shared
variable to no less than zero and no more than five, an arbitrary value.

Int < 5, Int’ := Int + 1



These next two rules keep the system running when the variable is in the
established limits.

(prc 1) : Proc -{v = Int, sh’ = Int’, -}-> prc 1

In order to analyze this specification with Maude’s model checker, let us
create a proposition ‘max(i)’, which holds whenever the shared variable has
a value equal or inferior to 1i.

op max : Int -> Prop .

ceq (< S, {v=1I,PR 1} > |=max (I) = true
if I’ <=1

If we use the fair scheduling of processes described on Section 1.1.2, we
will notice that the value of the shared variable will never exceed one.

rewrites: 2511 in 26ms cpu (26ms real) (93013 rewrites/second)
reduce in CHECK :

modelCheck(init, [] max(1))
result Bool :

true

Using the specification without fairness we quickly arrive at a counterex-
ample where process zero always increments the shared variable up to five.

reduce in CHECK :
modelCheck (init, [] max(1))
result ModelCheckResult :

counterexample(

{ < (prc 0 prc 1), {fair =0, v =0} >}
{ < (prc 0 prc 1), {fair =0, v =1} > }
{ < (prc 0 prc 1), {fair =0, v =2} >}
{ < (prc 0 prc 1), {fair =0, v =23} >}
{ < (prc 0 prc 1), {fair = 0, v = 4} > },
{ < (prc 0 prc 1), {fair =0, v =5} > })



1.2.2 Mutual exclusion using semaphores

This Section specifies a mutual exclusion algorithm using semaphores. It is
also an introductory example that shows how a process keeps is internal state
using the ‘St’ set.

Let us begin with a specification without semaphores and check the race
condition problem, in this specification processes have two possible states:
either they are inside the critical region (‘cric’) or not, the remainder region
(‘rem’).

St .

St ::= crit | rem .
Proc .

Proc ::= pid (Int, St)

Processes keep entering and leaving their critical region.

prc (Int, rem) : Proc --> prc (Int, crit)
prc (Int, crit) : Proc --> prc (Int, rem)

This is specification is simple enough and we may search for all possible
states. A simple ‘search’ command suffices to show all four options:

(search
(< (prc (0, rem) prc (1, rem)) ::: ’Soup,
{ null } >) =>% C:Conf .)

Solution 1

C:Conf <- <(prc(0,rem) prc(l,rem))::: ’Soup,{nulll}>
Solution 2

C:Conf <- <(prc(0,crit) prc(l,rem))::: ’Soup,{null}>
Solution 3

C:Conf <- <(prc(0,rem) prc(l,crit))::: ’Soup,{null}>
Solution 4

C:Conf <- <(prc(0,crit) prc(l,crit))::: ’Soup,{nulll}>
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To avoid the race condition shown on the fourth solution, let us rewrite
our rules with a semaphore semantics: before entering the critical region, a
process will go through intermediate states ‘down’ and ‘up’, represented by
the read-write component ‘sem’.

Label = { sem : Int, sem’ : Int, ... }
We need to at ‘down’ and ‘up’ to our set of possible states, ‘St”:
St ::= down | up .
Before entering a critical region, a process first go to its ‘down’ state:
prc (Int, rem) : Proc --> prc (Int, down)

Following the semaphore semantics, a process will only access its critical
region when the semaphore is zero.

prc (Int, down) : Proc -{sem = Int’, sem’ = Int’, -}->
prc (Int, down)

Int’ > 0, Int’’ := Int’ - 1

prc (Int, down) : Proc -{sem = Int’, sem’ = Int’’, -}->
prc (Int, crit)

Moving from the critical region to the remainder, the process first executes
its ‘up’ action, incrementing the value of the semaphore by one.

prc (Int, crit) : Proc --> prc (Int, up)

prc (Int, up) : Proc -{sem = Int’, sem’ = Int’’, -}->
prc (Int, rem)

Now, a search for a configuration where a race condition occurs is unsuc-
cessful.



search : <(prc(0,rem)prc(l,rem))::: ’Soup,{sem = 1}> =>*
<(prc(0,crit)prc(l,crit))::: ’Soup,R:Record > .

No solution.

Let us use the model checker to confirm this result. We begin by creating
an auxiliar operation ‘create-conf (i)’ that creates a configuration with i
processes. The proposition ‘race-condition’ holds whenever is more than
one process is its critical zone.

rewrites: 817190 in 7638ms cpu (7638ms real)
(106978 rewrites/second)
reduce in CHECK :
modelCheck(create-conf (10), [] ~ race-condition)
result Bool :
true

It is interesting to observe that, since the system does not have justice,
there is a possibility that a process may never enter its critical region. Let
us add a new proposition ‘in-crit (i)’ that holds when a process i is in its
‘crit’ state. The following verification fails with a counterexample where
process ‘1’ is “stuck” on its ‘down’ state.

reduce in CHECK :
modelCheck(create-conf(3), <> in-crit(1))
result ModelCheckResult :
counterexample

{prc (1, rem) prc (2, rem) prc (3, rem)}
{prc (1, down) prc (2, rem) prc (3, rem)}
{prc (1, down) prc (2, down) prc (3, rem)}
{prc (1, down) prc (2, crit) prc (3, rem)}
{prc (1, down) prc (2, up) prc (3, rem)}
{prc (1, down) prc (2, up) prc (3, down)}
{prc (1, down) prc (2, rem) prc (3, down)}
{prc (1, down) prc (2, down) prc (3, down)},
{prc (1, down) prc (2, crit) prc (3, down)}



1.2.3 Dining Philosophers

This Section presents a solution to Dijkstra’s “Dining Philosophers” problem
as described in [4]. This solution is based on breaking the symmetry on the
moment in which each philosopher acquires its fork: philosophers with even
pids first attempt to acquire the fork at their left, while philosophers with
odd pids first attempt to acquire the fork at their right.

By definition, the right fork of a philosopher i has number i, and the left
fork has number i+ 1 mod n. When there is a competition to acquire a fork,
the pids of the competing philosophers are inserted on a queue present in
each fork. As each philosopher is done with the fork, it removes its pid from
the queue.

The MSDF specification is as follows. First we need to map each fork
id to a list of pids to implement the queue on each fork. The set ‘Pids’
defines that list of pids, while ‘Queue’ defines the map from integers (fork
ids) to ‘Pids’. Although a specific queue needs to be shared only between
two philosophers, to simplify the specification we opted to make it globally
shared by creating a read-write component indexed by ‘q’.

Pids = (Int) List .
Queue = (Int, Pids) Map .
Label = {q : Queue, q’ : Queue, ...} .

The specification is parameterized by a constant ‘n’, which should be
instantiated through an equation to the correct number of philosophers on
the table.

Int ::=n .

Each philosopher is a process with the following states. Each state will
be detailed on the subsequent transitions.

St .

St ::= srem
| stest-right
| stest-left
| sleave-try
| scrit
|

sreset-right
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| sreset-left
| sleave-exit
| stry
| sexit

Let us show only the transitions for odd-numbered processes. The even-
numbered transitions are symmetric to the ones shown here. Initially, all
philosophers are hungry and will attempt to acquire their forks, that is all

processes are in the state ‘stry’. Odd-numbered processes, selected with the
predicate ‘odd (1), attempt to acquire their right forks (state ‘stest-right’).

odd (Int)

prc (Int, stry) : Proc --> prc (Int, stest-right)

At this point we make a slight modification to the original algorithm. The
original rule is the following: if the fork is unavailable, the process put its
pid on the queue, and go back to test if its pid reached the beginning of the
queue, as the rule below shows. Recall from Section 7?7 that ‘insert-back’
and ‘first’ are functions operating on parameterized lists.

odd (Int),
Pids := lookup (Int, Queue),
Pids’ := if (not Int in Pids)
then insert-back (Int, Pids) else Pids fi,
Queue’ := (Int |-> Pids’) / Queue,

St := if first (Pids’) == Int
then stest-left else stest-right fi
prc (Int, stest-right) : Proc
-{q = Queue, q’ = Queue’, -}-> prc (Int, St)

This busy waiting makes verification more complex since, if the algorithm
is incorrect, it would enter a livelock and not in a deadlock. Deadlocks are
easier to check with Maude: it needs only to look for a state to which no rule
applies, since the system is reactive. We opted to change the algorithm by
allowing at most one process in the queue, making it behave as a semaphore.
The transition will only happen when a process successfully acquires a fork
by putting its pid on the queue and immediately checking that it is at the
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beginning of the queue—that is, the queue was empty. If the fork is success-
fully acquired, the process moves to acquire its left fork by changing its state
to ‘stest-left’, otherwise it does not change its state.

odd (Int),
Pids := lookup (Int, Queue),
Pids’ := if (not Int in Pids)
then insert-back (Int, Pids) else Pids fi,
Queue’ := (Int |-> Pids’) / Queue, first (Pids’) == Int

prc (Int, stest-right) : Proc
-{q = Queue, g’ = Queue’, -}-> prc (Int, stest-left)

Not only is this rule simpler than the previous one, it also has the advan-
tage of creating a deadlock instead of a livelock if the specification has any
problems.

The rule for the ‘stest-left’ state is similar to the rule for ‘stest-right’.
The difference is that, when the left fork is acquired, the process moves to
‘sleave-sty’.

odd (Int),
Pids := lookup (((Int + 1) rem n), Queue),
Pids’ := if (not Int in Pids)

then insert-back (Int, Pids)
else Pids fi,
Queue’ := ((((Int + 1) rem n)) |-> Pids’) / Queue,
first (Pids’) == Int

prc (Int, stest-left) : Proc
-{q = Queue, q’ = Queue’, -}-> prc (Int, sleave-try)

One in the ‘sleave-sty’ state, a process moves to is critical region.

odd (Int)

prc (Int, sleave-try) : Proc --> prc (Int, scrit)

After accessing its critical region, a process moves to the ‘sexit’ state,
in which it first puts the right fork down, and then the left.
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odd (Int)

prc (Int, scrit) : Proc -{-}-> prc (Int, sexit)

odd (Int)

prc (Int, sexit) : Proc --> prc (Int, sreset-right)

In order to put the right fork down, it must remove itself from the queue
on that fork. Since the queue only had the pid of the process, it will be
empty after this operation.

odd (Int), Pids := lookup (Int, Queue),
Pids’ := remove (Int, Pids),
Queue’ := (Int |-> Pids’) / Queue
prc (Int, sreset-right) : Proc
-{q = Queue, q’ = Queue’, -}->
prc (Int, sreset-left)

The same process is make for the left fork.

odd (Int), Pids := lookup (((Int + 1) rem n), Queue),
Pids’ := remove (Int, Pids),
Queue’ := ((((Int + 1) rem n)) |-> Pids’) / Queue

prc (Int, sreset-left) : Proc
-{q = Queue, g’ = Queue’, -}-> prc (Int, sleave-exit)

One the left fork is taken down, a process goes to its ‘srem’ state, which
models the philosopher thinking.

odd (Int)

prc (Int, sleave-exit) : Proc --> prc (Int, srem)

After thinking for a while a philosopher gets hungry again and returns to
its ‘stry’ state.
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odd (Int)

prc (Int, srem) : Proc --> prc (Int, stry)

Searching for a final state on with the ‘search’ command with the ‘=>!’
predicate relation is a good way of finding a deadlock on the algorithm, since
a final state is a state in which no rule applies, meaning that the entire pool
of processes is stopped and cannot continue to evolve.

The auxiliar function ‘initial-conf’ creates an initial configuration with
the desired number n of philosophers. For n = 4, the algorithm takes 3.6
seconds to find that there is no final state, as we expect on a correct config-
uration.

rewrites: 760825 in 3604ms cpu (3646ms real)
(211079 rewrites/second)
search in SEARCH : initial-conf =>! C:Conf

No solution.
When n = 6, the search takes two minutes.

rewrites: 26197002 in 127450ms cpu (127420ms real)
(205547 rewrites/second)
search in SEARCH : initial-conf =>! C:Conf

No solution.

We may further test the specification using more searches. For example
we know that, in a configuration with four philosophers, two philosophers
may eat at the same time (that is, be at their respective ‘scrit’ states),
however, a philosopher may never eat concurrently with its neighbor. We may
verify this by asking ‘search’ to return all states in which two philosophers
are in their ‘scrit’ states:

search in SEARCH : initial-conf =>x
< (prc(Il:Int,scrit)prc(I2:Int,scrit) S:Soup)::: ’Soup,
R:Record > .

I1:Int <- 0 ; I2:Int <- 2
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I1:Int <=1 ; I2:Int <- 3
I1:Int <= 2 ; I2:Int <- O
I1:Int <- 3 ; I2:Int <- 1

Another search confirms that three philosophers never eat at the same
time in a four-philosopher configuration.

search in SEARCH : initial-conf =>*
<(prc(I1:Int,scrit)prc(I2:Int,scrit)prc(I3:Int,scrit)
S:Soup)::: ’Soup,R:Record > .

No solution.

Because the specification does not have justice, it is possible that a par-
ticular philosopher may never have the chance to eat, as the following model
checking shows. The proposition ‘state(i,s)’ holds when process i is in
state s. Looking at the counterexample, we notice that process ‘0’ is “stuck”
in ‘sleave-try’ while process ‘2’ keeps entering and leaving its critical region
indefinitely.

rewrites: 3539 in 60ms cpu (60ms real) (58983 rewrites/second)
reduce in MODEL-CHECK :

modelCheck(initial-conf,<> state(0,scrit))
result ModelCheckResult :

counterexample(

{ prc(0,stry) prc(l,stry) prc(2,stry) prc(3,stry)}...,

prc(0,sleave-try) prc(2,srem) ... }
prc(0,sleave-try) prc(2,stry) ... }
prc(0,sleave-try) prc(2,stest-left) ... }
prc(0,sleave-try) prc(2,stest-right) ... }
prc(0,sleave-try) prc(2,sleave-try) ... }
prc(0,sleave-try) prc(2,scrit) ... }
prc(0,sleave-try) prc(2,sexit) ... }
prc(0,sleave-try) prc(2,sreset-left) ... }
prc(0,sleave-try) prc(2,sreset-right) ... }
prc(0,sleave-try) prc(2,sleave-exit) ... }

A m P A s s A s S S
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1.2.4 Dining Philosophers, terminating specification

This Section presents a variant of the specification in which each philosopher,
after eating, prints out its pid and stops. This specification was inspired by
the one present on [3].

The specification is similar to the one shown in Section 1.2.3 with some
modifications. The first is the addition of a write-only component ‘Int*’,
indexed by ‘out’’, to model the output of information by the processes.

Label = {out’ : Int*, q : Queue, q’ : Queue, ...} .

We also change the rule for the ‘scrit’ state, making the process output
its pid.

odd (Int)

prc (Int, scrit) : Proc -{out’ = Int, -}-> prc (Int, sexit)

The following rule for the ‘srem’ state is removed, since, a philosopher no
longer gets hungry again after thinking.

odd (Int)

prc (Int, srem) : Proc --> prc (Int, stry)

This slight modification of the algorithm allows for more interesting veri-
fications. Searching for all final states using the ‘search’ command, we must
arrive in states in which the ‘out’’ component contains all the pids of the
processes in the configuration.

search in SEARCH : initial-conf =>! C:Conf

Solution 1
C:Conf <- <( prc(0,srem) prc(l,srem) prc(2,srem) prc(3,srem))
{..., out’ = 0,1,2,3}>

Solution 2

C:Conf <- <( prc(0,srem) prc(l,srem) prc(2,srem) prc(3,srem))
{...,out’ =0,1,3,2}>
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Solution 3
C:Conf <- <( prc(0,srem) prc(l,srem) prc(2,srem) prc(3,srem))
{...,out’ =0,3,1,2}>

There are several possible variations of the contents of the ‘out’’ compo-
nent, since the order in which a philosopher eats is non-deterministic.

Following the example in [3] let us model check this specification using a
proposition ‘check(i)’ which holds when the component ‘out’’ contains all
numbers less than 1i.

rewrites: 505248 in 2450ms cpu (2440ms real)
(206223 rewrites/second)
reduce in MODEL-CHECK :
modelCheck(initial-conf,<> check (n - 1))
result Bool :
true

In this case, since a process eventually stops, all processes eventually eat.
The example below shows the case of process ‘0’. Recall that ‘state(i,s)’
holds then process 1 is in state s.

rewrites: 176389 in 1750ms cpu (1750ms real)
(100793 rewrites/second)
reduce in MODEL-CHECK :
modelCheck(initial-conf,<> state (0,scrit))
result Bool :
true

1.2.5 Dining Philosophers, fair scheduling

It is interesting to see what is the effect of adding a fair scheduling, according
to the discussion on Section 1.1.2, on the specification. Let us make these
changes to the terminating specification (Section 1.2.4), but they are easily
adapted to the looping specification. Besides the scheduling rules, of course,
the only change to that specification is the addition of the following rule:
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odd (Int)

prc (Int, srem) : Proc --> prc (Int, srem)

This is necessary because a process needs to pass its turn to the next
process when it is in its stopped mode.

The interesting result of this change is that the verification capacity is
greatly enhanced. For example, let us check a 200-philosopher configuration
for a deadlock. Notice that there is no final state, now that, upon termina-
tion, process keep “passing the turn” indefinitely.

rewrites: 86864 in 10442ms cpu (10501ms real)
(8318 rewrites/second)
search in SEARCH : initial-conf =>! C:Conf

No solution.

The model checking of the ‘check(i)’ proposition is also successful.

rewrites: 1661019 in 42601ms cpu (43419ms real)
(38989 rewrites/second)
reduce in MODEL-CHECK :
modelCheck(initial-conf,<> check(n - 1))
result Bool :
true

As it was expected with a fair scheduling of the execution, a process will
now eventually eat.

reduce in MODEL-CHECK :
modelCheck(initial-conf,<> state(0,scrit))
result Bool :
true

reduce in MODEL-CHECK :
modelCheck(initial-conf,<> state(199,scrit))
result Bool :
true
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1.2.6 An incorrect solution for the dining philosophers

This Section shows how a deadlock is detected in an incorrect specification,
which, as we outlined on Section 1.2.3, is one that does not break the sym-
metry on the order on which each philosopher acquire its fork.

We may “break” any of the specifications described so far by removing
the subset of the rules that applies to odd (or even) processes and, of course,
removing the predicate ‘odd(i)’ (or ‘even(i)’) from the condition on the
rules. Clearly, this should lead to a deadlock. In what follows we attempt
to verify this deadlock with each of the several variants of the solution we
developed.

Let us begin with the looping specification, in which each philosopher
gets hungry again after thinking. A search for a final state with the ‘search’
command with a configuration with four philosophers finds the deadlocked
state: all philosophers are “stuck,” holding their left forks.

search in SEARCH : initial-conf =>! C:Conf .

Solution 1
C:Conf <-
< prc (0,stest-left) prc (1,stest-left)
prc (2,stest-left) prc (3,stest-left))
{ q= (0 [->[0] +++ 1 [->[1] +++
2 |->[2] +++ 3 |->[3]) } >

No more solutiomns.

With the terminating specification, the search finds not only the states in

which the philosophers successfully eat, but also the deadlock state (‘Solution
1.

search in SEARCH : initial-conf =>! C:Conf .

Solution 1
C:Conf <-
< prc (0, stest-left) prc (1, stest-left)
prc (2, stest-left) prc (3, stest-left)),
{ fair = 0,out’ = ),
q = (0 |-> [0] +++ 1 [-> [1] +++
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2 [-> [2] +++ 3 |-> [3]) }>

Solution 2
C:Conf <-
< prc (0, srem) prc (1, srem)
prc (2, srem) prc (3, srem),
{ fair = 0, out’ = 0,1,2,3,
q = [-> [] +++ 1 [-> [] +++
2 1> ] +++ 3 |—> [1) ¥

Solution 3
C:Conf <-
< prc (0, srem) prc (1, srem)
prc (2, srem) prc (3, srem),
{ fair = 0, out’ = 0,1,3,2,
q =0 |-> [1 +++ 1 [-> [] +++
2 |-> [1 +++ 3 |->[1) >

The specification with the round-robin scheduling is also prone to the
deadlock.

rewrites: 671 in 20ms cpu (20ms real) (33550 rewrites/second)
search in SEARCH : initial-conf =>! C:Conf .

Solution 1
C:Conf <-
< prc (0,stest-left) prc (1,stest-left)
prc (2,stest-left) prc (3,stest-left)),
{ fair = 0, out’ = (),
q =(0 [->[0]+++ 1 [->[1]+++ 2 |[->[2]+++ 3 |->[3]) }>

Recall that, with a fair scheduling policy, the model checking of a propo-
sition that states that eventually a process will enter its critical region suc-

ceeds. The following shows that this is no longer the case, and presents as
counterexample the same deadlocked situation, omitted here for brevity.

rewrites: 2520 in 50ms cpu (50ms real) (50400 rewrites/second)
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reduce in MODEL-CHECK :
modelCheck(initial-conf,<> state(0,scrit))

result ModelCheckResult :
counterexample(...)

1.2.7 Bakery algorithm

This Section presents a specification of Lamport’s Bakery Algorithm, de-
scribed in [4]. Tts primary objective it to give a verification example of an
unbounded algorithm using an abstraction [6, 7]. Intuitively, the algorithm
simulates a bakery (in Lamport’s conception of how a bakery works) where
customers wait for their turn by drawing tickets when they enter and are
served in the order of their ticket numbers.

Let us begin the formal description by defining two read-write compo-
nents: ‘ch’ models whether a process is choosing its number or not; ‘nm’
holds the chosen number. Both components are of the same type, ‘IntM’,
which is a map from integers (the pids) to integers (the chosen numbers).

IntM = (Int, Int) Map .
Label = {ch : IntM, ch’ : IntM,
nm : IntM, nm’ : IntM, ...} .

A process may go through the following states, explained throughout the
transition rules.

St .
St ::= choosing (Int, Int)
| waiting (Int)

| rem

| crit

| try

| exit .

When a process wants to go into its critical region, it tells others that it
is doing so by changing its entry on the ‘ch’ component to ‘1’. The process
then choose a number that is greater than all the number chosen by other
processes. This is done in the ‘choosing(i, m)’ state, which 1 contains the
number of processes left to check and m the greatest number found so far.
Let us assume that the constant ‘n” will be bound, by an equation, to the
number of processes currently running.
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IntM’ := (Int |-> 1) / IntM
prc (Int, try) : Proc -{ch = IntM, ch’ = IntM’, -}->
prc (Int, choosing (n - 1, -1))
(Intl >= 0), (Intl =/= Int), (Int2’ := lookup (Intl, IntM)),

Int3 := if Int2’ > Int2 then Int2’ else Int2 fi
prc (Int, choosing (Intl, Int2)) : Proc
—{nm = IntM, nm’ = IntM, -}->
prc (Int, choosing (Intl - 1, Int3))

During the choosing process, a process must ignore its own number.

prc (Int, choosing (Int, Int2)) : Proc -->
prc (Int, choosing (Int - 1, Int2))

When 1 = —1, the greatest number found is m. The process then chooses
as its own number m + 1 and goes to the next phase of the algorithm.

Int’’ := (Int’ + 1), IntM’1 := (Int |-> 0) / IntM1,
IntM’2 := (Int |-> Int’’) / IntM2
prc (Int, choosing (-1, Int’)) : Proc
-{ch = IntM1, ch’ = IntM’1,
nm IntM2, nm’ IntM’2, -}—>
prc (Int, waiting (0))

On this phase, a process keeps a constant watch on the other processes,
iterating through the ‘waiting(i)’ state, where 0 < i < n — 1 (recall that
1 is the number of processes). It waits until its number if the lowest of all
in order to access its critical region and avoids comparing with any process
that is currently choosing its own number.

Since there is a possibility that several processes begin the choosing pro-
cess at the same time, it may happen that processes choose the same number.
In order to deal with this, the comparison to find the lowest number is made
lexicographically using (i,p) where i is the process number and p its pid.
This is formalized by the transition below, which specifies that process ‘Int’
is comparing its number with process ‘Int’’. The predicate ‘Int1’ == 0’
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first makes sure that process ‘Int’’ is not choosing a number. If the cho-
sen number of process ‘Int’’ is zero (‘Int2’ == 0), process ‘Int’’ just left

the critical region and process ‘Int’ may access it directly, otherwise the
lexicographical comparison is made.

prc (Int, waiting (Int)) : Proc -->
prc (Int, waiting ((Int + 1) rem n))

Int’ =/= Int,

(Intl’ := lookup (Int’, IntM1)),
(Int2’ := lookup (Int’, IntM2)),
(Int2 := lookup (Int, IntM2)),
St := if Intl1l’ == 0 and

(Int2’ == 0 or
((Int2 < Int2’) or
(Int2 == Int2’ and Int < Int’)))
then crit else waiting ((Int’ + 1) rem n)
fi
prc (Int, waiting (Int’)) : Proc
-{ch = IntM1, ch’ = IntM1l,
nm = IntM2, nm’ = IntM2, -}->
prc (Int, St)

Upon exiting its critical region, a process, as we said, changes its chosen
number to zero and moves to its ‘rem’ state. Once in its ‘rem’ state, a process
attempts to access the critical region again by moving to its ‘try’ state.

IntM2’ := (Int |-> 0) / IntM2

prc (Int, crit) : Proc -{nm = IntM2, nm’ = IntM2’, -}->
prc (Int, rem)

prc (Int, rem) : Proc --> prc (Int, try)
Unfortunately, this algorithm does not have an upper bound on the chosen

number. Also, the apparently trivial solution of using integers modulo some
very large b also fails.
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We may verify that there is no upper bound on the chosen number using
a ‘search’, showing that, with two processes, the chosen number can easily
reach ten (or any other natural). The problem happens when a process
chooses a number while the other process is in its critical region. A process
only zeroes its chosen number after leaving the critical region. It works as
follows: process ‘0’, with a chosen number of 2, is in its critical region; process
‘1’ chooses 3 as its number; when this process is in its critical region, process
‘0’ gets another number, which is 4, and so on.

search [1] in BAKERY : initial-conf =>*
< S:Soup,{PR:PreRecord,n = (0 |-> 10 +++ 1 [-> I:Int)} > .

< (prc(0, waiting(1)) prc(l, crit)),
n=0]>2++1[|-> 1)} >

< (prc(0, waiting(1)) prc(l, rem)),
n=0I[>2++1[|>07}>

< (prc(0, crit) prc(1l, choosing(-1, 2))),
o= [>2++1]>07}>

%”(prc(o, waiting(1)) prc(l, crit)),
{n=(@ >4 +++1|->3)} >

< (prc(0, crit) prc(1l, choosing(-1, 4))),
o=@ I[>4+++11[|->07}>

< (prc(0, waiting(1)) prc(l, crit)),
{n=(@Q |->6+++1|->5)} >

< (prc(0, crit) prc(1l, choosing(-1, 6))),
o=@ I[->6+++1]->07}>

< (prc(0, waiting(1)) prc(l, crit)),
h=Q [->8+++1 |->T7)} >

< (prc(0, crit) prc(1l, choosing(-1, 8))),
{n=@Q|->8+++ 1 |->07} >
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< (prc(0, choosing(l, -1)) prc(1l, waiting(0))),
o=@ [->0+++ 1 [->9)} >

< (prc(0, choosing(0, 9)) prc(1l, waiting(0))),
{n=01->0++1[->9}>

< (prc(0, choosing(-1, 9)) prc(l, waiting(0))),
{n=@Q |->0+++1[>9} >

< (prc(0, waiting(0)) prc(1l, waiting(0))),
{n=( [-> 10 +++ 1 |[-> 9} >

Let us naively modify the algorithm so that the chosen number is incre-
mented modulo, say, 2267. The algorithm fails for the same reason: chosen
numbers gets increasingly high and, using arithmetic modulo 2267, they will
eventually be zero, a number that is obviously smaller than all other numbers,
as the following search for a race condition shows:

search [1] in BAKERY : initial-conf =>x
< (prc(0, crit) prc(l, crit)) ::: ’Soup,{PR:PreRecord} > .

Solution 1 (state 183534)
states: 183535 rewrites: 5607219 in 34110ms cpu
(34130ms real) (164386 rewrites/second)
PR:PreRecord ——> ch = (0 |-> 0 +++ 1 |-> 0),
n= (0 |->2266 +++ 1 |-> 0)

< (prc(0, try) prc(l, choosing(-1, 2264))) ,
{n=( [->0++1[->0)72}>

< (prc(0, choosing(1l, -1)) prc(l, choosing(-1, 2264))),
{n=@Q |->0+++1 >0} >

< (prc(0, choosing(l, -1)) prc(1l, waiting(0))),
{n=0(@[|->0+++ 1 |->2265)} >

< (prc(0, choosing(0, 2265)) prc(l, waiting(0))),
{n=10( [|->0+++ 1 |->2265)} >

< (prc(0, choosing(-1, 2265)) prc(l, waiting(0))),
{n = (0 [-> 0 +++ 1 |-> 2265)} >

< (prc(0, waiting(0)) prc(1l, waiting(0))),
{n = (0 |-> 2266 +++ 1 |-> 2265)} >
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< (prc(0, waiting(1)) prc(l, waiting(0))),
{n = (0 |-> 2266 +++ 1 |-> 2265)} >

< (prc(0, waiting(1)) prc(l, crit)),
{n = (0 [-> 2266 +++ 1 |[-> 2265)} >

< (prc(0, waiting(1)) prc(l, rem)),
{n= (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(l, rem)),
{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(l, try)),
{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1l, choosing(l, -1))),
{n= (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1l, choosing(0, -1))),
{n = (0 [-> 2266 +++ 1 [-> 0)} >

< (prc(0, crit) prc(1l, choosing(-1, 2266))),
{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(l, waiting(0))),
{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(l, crit)),
{n = (0 |-> 2266 +++ 1 |-> 0)} >

In order to make this algorithm amenable to verification, we must create
an abstraction that captures the essence of the algorithm, but does not have
the infinite number of states of the original. The solution follows the ideas
described in [6], in which a two-process abstraction is defined and proved to
correctly simulate the original specification.

The key to find the correct abstraction in this case is to realize that the
actual absolute value of the chosen number is not important, but its relative
value with regard to the other numbers.

We begin with the following two equations: a process changes its number
to zero after leaving the critical zone, so the number chosen by the other
process in this case does not need to grow indefinitely: choosing number one
is sufficient.

ceq (< S:Soup, {n=( |[->0 +++ 1 |-> 1), PR } >)

= < S:Soup, {n=(0 |-> 0 +++ 1 |[-> 1), PR } >
if I >1 .
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ceq (< S:Soup, {n=( |[->TI+++1 |->0), PR } >)
= < S:Soup, {n=( |[->1+++ 1 |[->0), PR } >
if I >1.

Next, the following equations keep the chosen numbers of both processes
from growing indefinitely, while keeping their relative values.

ceq (< S:Soup, {n=( |->TI+++ 1 |->1I’), PR } >)
=< S:Soup, {n=( [->2+++ 1 |->1), PR } >
if (I’ < I) /\ not (I’ ==1 and I == 2)

ceq (< S:Soup, {n=(0 |[-> I +++ 1 |->1I’), PR } >)
= (< S:Soup, { n O |->1+++ 1 |-> 1), PR } >)
if not (I’ < I) /\ not (I’ == 1 and I == 1)

With these abstractions we may now try a search for a race condition.

rewrites: 4195 in 61lms cpu (61lms real) (67671 rewrites/second)
search in CHECK :
initial-conf =>*% <(prc(0,crit)prc(l,crit))::: ’Soup,
{PR:PreRecord}> .

No solution.

Also, both processes eventually reach their critical region, according to
the results of the two searches below:

rewrites: 3463 in 36ms cpu (36ms real) (93609 rewrites/second)
search in CHECK :
initial-conf =>* <(prc(0,crit)prc(1,St:St))::: ’Soup,
{PR:PreRecord}> .

Solution 1

PR:PreRecord <- ch =(0 |[-> 0 +++ 1 |-> 0),
n=(01]>1+++11]->1);

St:St <- waiting(0)

rewrites: 3376 in 26ms cpu (26ms real) (125055 rewrites/second)

search in CHECK :
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initial-conf =>* <(prc(l,crit)prc(0,St:St))::: ’Soup,
{PR:PreRecord}> .

Solution 1

PR:PreRecord <- ch =(0 |[-> 0 +++ 1 |-> 0),
n=>(0|->2+++ 1 |-> 1);

St:St <- waiting(0)

Bye.

1.2.8 Leader election on an asynchronous ring

This Section specifies the algorithm for leader election on an unidirectional,
asynchronous ring. It is used as an example of a specification that uses the
message-passing model and provides us with more complex model checking
examples. The intuitive idea behind this algorithm is to elect as leader the
process that has the highest pid of all processes in the ring. Each process
forwards its own pid to its neighbor. A process, upon receiving a pid that
is greater than its own, forwards it to its neighbor. The greatest pid will
eventually circle the ring arriving back at its origin. When a process receives
its own pid from a neighbor, it knows it is the leader. It may initiate now,
for example, a broadcast announcing the leader election.

Let us begin the formal description of the algorithm by defining the for-
mat of the messages. It contains as first argument a pid and as the second
argument the destination of the message. There is no need to keep track of
the source of the message, as we are dealing with a known network topology.

Msg ::= m Int to Int .

The ring network is modelled in this specification by having each process
knowing the pid for its neighbor. Only one neighbor is known, hence com-
munication in this specification is made in only one direction throughout the
ring.

Proc ::= prc (Int, Int’, St)

As usual, we show the states of a process, while explaining their meaning
on the subsequent transitions.
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At the beginning of the algorithm, each process sends its pid to its neigh-
bor.

prc (Int, Int’, start) : Soup -->

prc (Int, Int’, waiting) (m Int to Int’)

When a process receives a message from a neighbor, it compares its pid 1

with the pid 1’ received from its neighbor. If i’ > 1, it forwards the message
to its own neighbor.

Int’’ > Int

prc (Int, Int’, waiting) (m Int’’ to Int) : Soup -->
prc (Int, Int’, waiting) (m Int’’ to Int’)

If i" < i, it removes the message from the ring.

Int’’ < Int

prc (Int, Int’, waiting) (m Int’’ to Int)

: Soup ——>
prc (Int, Int’, waiting)
When i’ =1 the process know it is the leader.
Int’’ == Int
pre (Int, Int’, vaiting) (m Int’’ to Int) : Sowp —>

prc (Int, Int’, leader)

In order to verify the correctness of the specification, let us make some
verifications using Maude’s model checker on a configuration with four pro-

cesses. We begin by creating an operation ‘leaders(S)’ that computes the
number of leaders in a soup S.
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op leaders : Soup —> Int

eq leaders (S S’) = leaders (S) + leaders (S’)
eq leaders (prc (I, I’, leader)) =1 .

eq leaders (prc (I, I’, waiting)) =0 .
eq leaders (prc (I, I’, start)) =0 .
eq leaders (m I to I’) =0 .

The proposition ‘one-leader’ holds when there is exactly one leader on
the configuration, while ‘no-leader’ holds when there is no leader on the
configuration.

op one-leader : —-> Prop .
op no-leader : -> Prop .
eq < S ::: ’Soup, R > |= one-leader = (leaders (S) == 1)
eq < S ::: ’Soup, R > |= no-leader = (leaders (S) == 0)

We may now model check our first formula: in all executions of the spec-
ification, there is always one leader.

rewrites: 7339322 in 56444ms cpu (56447ms real)
(130027 rewrites/second)
reduce in CHECK :
modelCheck(init, <> [] one-leader)
result Bool :
true

There is no execution in which a leader is not elected.

rewrites: 7204804 in 56551ms cpu (57278ms real)
(127402 rewrites/second)
reduce in CHECK :
modelCheck(init, ~ [] no-leader)
result Bool :
true

In all executions, there is no leader until a leader is selected.
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rewrites: 7340679 in 57867ms cpu (5891bms real)

(126853 rewrites/second)

reduce in CHECK :

modelCheck(init, [] (no-leader U one-leader))

result Bool :

true

References

1]

G. Berry and G. Boudol. The chemical abstract machine. In Conf. Record
17th ACM Symp. on Principles of Programmming Languages, POPL’90,
San Francisco, CA, USA, 17-19 Jan. 1990, pages 81-94. ACM Press,
New York, 1990.

Fabricio Chalub. An Implementation of Modular Structural Operational
Semantics in Maude. Master’s thesis, Universidade Federal Fluminense,
2005. http://www.ic.uff.br/ "frosario/dissertation.pdf.

Azade Farzan, Feng Chen, José Meseguer, and Grigore Rosu. Formal
analysis of Java programs in JavaFAN. In Rajeev Alur and Doron A.
Peled, editors, CAV, Lecture Notes in Computer Science. Springer, 2004.

Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

José Meseguer. Rewriting as a unified model of concurrency. Techni-
cal Report SRI-CSL-90-02R, SRI International, Computer Science Lab-
oratory, February 1990. Revised June 1990. Appendices on functorial
semantics have not been published elsewhere.

José  Meseguer, Miguel Palomino, and Narciso Marti-Oliet.
Notes on model checking and abstraction in rewriting logic.
http://maude.cs.uiuc.edu/.

José Meseguer, Miguel Palomino, and Narciso Marti-Oliet. Equational
abstractions. In Franz Baader, editor, Automated Deduction - CADE-19.
19th International Conference on Automated Deduction, Miami Beach,
FL, USA, July 28 - August 2, 2003, Proceedings, volume 2741 of Lecture
Notes in Computer Science. Springer-Verlag, 2003.

31



[8] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1980.

[9] Robin Milner. Communicating and Mobile Systems: the 7t-Calculus.
Cambridge University Press, 1999.

32



